SECTION 3

PROPERTIES OF EXTREN®

Look for this blue line in the left margin of the Design Manual documents. This line shows you where the latest update has been made.

STRONGWELL

PROPERTIES OF EXTREN®

INTRODUCTION

The properties in this manual are for product as produced by Strongwell and the data sheets in this section present the **minimum** ultimate values from testing in conformance to ASTM procedures. These values are obtained from coupons machined from **EXTREN**[®] structural shapes and function as a proof test for the **EXTREN**[®] composite. Descriptions of the ASTM test procedures are found at the end of this section.

Strongwell verifies the full section bending Modulus of Elasticity using a simple beam concept at the start of each production run. The empirically determined **EXTREN**[®] structural design equations presented in later sections will be a function of the Modulus of Elasticity.

The designer must consider environmental factors in designing for the actual application. These factors include elevated temperature and corrosive chemicals.

TEMPERATURE EFFECTS

The approximate retention of mechanical properties at elevated temperatures are:

		EXTREN®		
		Series 500/525	Series 625	
	100°F	85%	90%	
	125°F	70%	85%	
Ultimate Stress	150°F	50%	80%	
	175°F	not recommended	75%	
	200°F	not recommended	50%	
	>200°F	not recommended	not recommended	
	100°F	100%	100%	
	125°F	90%	95%	
Modulus of Elasticity	150°F	85%	90%	
	175°F	not recommended	88%	
	200°F	not recommended	85%	
	>200°F	not recommended	not recommended	

These recommendations are based on the normal **EXTREN**[®] proprietary resin system. Strongwell routinely processes other resin systems to achieve higher temperature ratings for specific applications.

CORROSION EFFECTS

As a general rule, the isophthalic polyester resin used in **EXTREN**[®] Series 500/525 is resistant to most acidic attacks while the vinyl ester resin in **EXTREN**[®] Series 625 is resistant to acids and bases. The effect of corrosive chemicals is temperature dependent with elevated temperature increasing the corrosion activity. A corrosion guide has been included in this manual and a Strongwell salesperson can respond to chemicals not listed in this guide.

Strongwell incorporates a synthetic veil on the surface of all **EXTREN**[®] structural shapes which causes a resin rich layer which enhances corrosion protection.

UV (ULTRAVIOLET RADIATION) EFFECTS

UV is a sunlight produced environmental attack on FRP composites. The synthetic surfacing veil also aids in protecting the composite from UV degradation, the effect of which is sometimes referred to as "fiber blooming". **EXTREN®** also contains a UV inhibitor.

There is a large variation in the degree of fading from UV degradation based on the color selected. It should be noted that the surfacing veil, while not preventing color fading, serves to protect the composite from any mechanical property degradation potentially caused by UV. Coating with materials such as UV stabilized polyurethane based paints are very effective in maintaining the color and offer the optimum long-term protection from UV attack.

SERIES 500/525/625 STRUCTURAL SHAPES ULTIMATE COUPON PROPERTIES

Below are the test results for the **minimum** ultimate **coupon** properties of **EXTREN**[®] structural shapes as per the referenced ASTM procedures. The properties of plate as well as thermal cure rod and bar are found elsewhere in this section. Designers should refer to Section 8 — **FLEXURAL MEMBERS** and Section 9 — **COMPRESSION MEMBERS** for the recommended design equations for **EXTREN**[®]. The actual geometry and application of the structural shape will determine its ultimate usability. Additionally, WF / I-Beam ASTM properties may vary due to location in the part but the modulus of elasticity will not be affected.

PROPERTY	ASTM TEST	UNITS	SERIES 500/525	SERIES 625
MECHANICAL				
Tensile Stress, LW	D638	psi	30,000	30,000
Tensile Stress, CW	D638	psi	7,000	7,000
Tensile Modulus, LW	D638	10 ⁶ psi	2.5	2.6
Tensile Modulus, CW	D638	10 ⁶ psi	0.8	0.8
Compressive Stress, LW ^①	D695	psi	30,000	30,000
Compressive Stress, CW	D695	psi	15,000	16,000
Compressive Modulus, LW	D695	10 ⁶ psi	2.5	2.6
Compressive Modulus CW	D695	10 ⁶ psi	0.8	0.8
Flexural Stress, LW [©] Flexural Stress, CW Flexural Modulus, LW [©] Flexural Modulus, CW	D790 D790 D790 D790 D790	psi psi 10 ⁶ psi 10 ⁶ psi	30,000 10,000 1.6 0.8	30,000 10,000 1.6 0.8
Modulus of Elasticity ③	full section full section	10 ⁶ psi	2.6	2.8
Modulus of Elasticity > 4" ③		10 ⁶ psi	2.5	2.5
Shear Modulus, LW (1) (8)		10 ⁶ psi	0.425	0.425
Short Beam Shear, LW (2) (8)	D2344	psi	4,500	4,500
Ultimate Bearing Stress, LW	D953	psi	30,000	30,000
Poisson's Ratio, LW (8)	D3039	in/in	0.33	0.33
Notched Izod Impact, LW	D256	ft-lbs/in	25	25
Notched Izod Impact, CW	D256	ft-lbs/in	4	4
PHYSICAL				
Barcol Hardness	D2583		45	45
24 hr Water Absorption	D570	% Max	0.6	0.6
Density	D792	Ibs/in³	.062070	.062070
Coefficient of Thermal Expansion, LW &	D696	10 ⁻⁶ in/in/⁰F	7	7
Thermal Conductivity &	C177	BTU-in/ft²/hr/⁰F	4	4
ELECTRICAL				
Arc Resistance, LW ®	D495	seconds	120	120
Dielectric Strength, LW ®	D149	KV/in	35	35
Dielectric Strength, PF ®	D149	volts/mil	200	200

VALUE
VO 25 Max 650-700 (Typical) Self Extinguishing 130°C Class 1

CW — crosswise

PF — perpendicular to laminate face

NOTES:

- ① Refer to Section 9 COMPRESSION MEMBERS for the recommended allowable stresses for EXTREN[®] columns.
- ② Refer to Section 8 FLEXURAL MEMBERS for the recommended allowable stresses for EXTREN[®] beams. LW results are for the flange only.
- ③ This value is determined from full section simple beam bending of **EXTREN**[®] structural shapes and will be used in Sections 8 and 9 for design.
- (4) The Shear Modulus value has been determined from tests with full sections of **EXTREN**[®] structural shapes. Less precise values are occasionally estimated for pultrusion by using an equation for isotropic materials, G=E/[2(1 + v)]. For example, if **EXTREN**[®] pultrusions are assumed to be isotropic with a Poisson's Ratio (v) of 0.33 and a Modulus of Elasticity of 2.6 x 10⁶ psi, then G = 977,000 psi, which exceeds the listed tested value. **EXTREN**[®] shapes are mat/roving composites and anisotropic.
- Strongwell incorporates a synthetic surfacing veil routinely on the surface of all EXTREN[®] structural shapes. This has the effect of lowering the measured Barcol Hardness and does not reflect an absence of cure. Other additives incorporated into the composite for corrosion protection and surface improvements may also reduce Barcol Hardness to a typical value of 45. A surface unprotected by a surfacing veil without additives would have a minimum value of 50.
- 6 Measured as a percentage maximum by weight.
- Span to depth ratio of 3:1; EXTREN[®] angles will have a minimum value of 4000 psi and the I/W shapes are tested in the web.
- ⑧ Typical values because these are shape, composite and orientation dependent tests.
- ⁽⁹⁾ This is a typical value which varies with composite thickness.

THERMAL CURE ROD AND BAR ULTIMATE COUPON PROPERTIES

Below are the test results for the **minimum** ultimate **coupon** properties of thermal cure rod and bar as per the referenced ASTM procedures. Rod and bar stock contain longitudinal reinforcements only – no mat. Coupon testing provides a proof test for the composite, but the actual geometry and application of the structural shape will determine its ultimate usability.

PROPERTY	ASTM TEST	UNITS	THERMAL CURE CLEAR
MECHANICAL	1201		OLEAN
Tensile Stress, LW	D3916	psi	100,000
Tensile Modulus, LW	D3916	10 ⁶ psi	6.0
Compressive Stress, Axial, LW	D695	psi	60,000
Flexural Stress, LW	D790	psi	100,000
Flexural Modulus, LW	D790	10 ⁶ psi	6.0
Notched Izod Impact, LW	D256	ft-lbs/in	40
Short Beam Shear, LW	D4475	psi	5,500
PHYSICAL			
Barcol Hardness	D2583	_	50
24 hr. Water Absorption ①	D570	% Max	0.25
Density	D792	lbs/in ³	.072076
Coefficient of Thermal Expansion	D696	10 ⁻⁶ in/in/°F	5
ELECTRICAL			
Dielectric Strength, LW 2	D149	KV/in	35

LW — lengthwise or parallel to the roving

NOTE: All thermal cure rod and bar are not normally produced with a fire retardant resin. Thermal cure rod and bar were not designed to be machined. Machining may cause splintering or other issues due to the lack fo off-axis reinforcements.

① Measured as a percentage maximum by weight.

② Typical values because these are shape and composite dependent tests.

STRONGWELL

SERIES 500/525 PLATE ULTIMATE COUPON PROPERTIES

Below are the test results for the minimum ultimate coupon properties of **EXTREN**[®] Series 500/525 plate as per the referenced ASTM procedures. Designers should refer to Section 10 — **PLATE** for the recommended design equations for **EXTREN**[®]. The actual geometry and application of the plate will determine its ultimate usability.

PROPERTY	ASTM TEST	UNITS	1/8"	THICKNESS 3/16"-3/8"	1/2"-1"
MECHANICAL					
Tensile Stress, LW	D638	psi	20,000	20,000	20,000
Tensile Stress, CW	D638	psi	7,500	10,000	10,000
Tensile Modulus, LW	D638	10 ⁶ psi	1.8	1.8	1.8
Tensile Modulus, CW	D638	10 ⁶ psi	0.7	0.9	1.0
Compressive Stress, Edgewise, LW	D695	psi	24,000	24,000	24,000
Compressive Stress, Edgewise, CW	D695	psi	15,500	16,500	20,000
Compressive Modulus, Edgewise, LW	D695	10 ⁶ psi	1.8	1.8	1.8
Compressive Modulus, Edgewise, CW	D695	10 ⁶ psi	0.7	0.9	1.0
Flexural Stress, Flatwise, LW	D790	psi	24,000	24,000	24,000
Flexural Stress, Flatwise, CW	D790	psi	10,000	13,000	17,000
Flexural Modulus, Flatwise, LW	D790	10 ⁶ psi	1.1	1.1	1.4
Flexural Modulus, Flatwise, CW	D790	10 ⁶ psi	0.8	0.8	1.3
Ultimate Bearing Stress, LW	D953	psi	32,000	32,000	32,000
Poisson's Ratio, LW ②	D3039	in/in	0.31	0.31	0.31
Poisson's Ratio, CW ②	D3039	in/in	0.29	0.29	0.29
Notched Izod Impact, LW	D256	ft-lbs/in	15	10	10
Notched Izod Impact, CW	D256	ft-lbs/in	5	5	5
PHYSICAL					
Barcol Hardness 24 hr. Water Absorption Density Coefficient of Thermal Expansion	D2583 D570 D792 D696	% Max Ibs/in³ 10 ⁻⁶ in/in/ºF	40 0.6 .060068 8	40 0.6 .060068 8	40 0.6 .060068 8
ELECTRICAL					
Dielectric Strength, LW ^②	D149	KV/in	35	35	35
Dielectric Strength, PF ^②	D149	volts/mil	200	N.T.	N.T.

LW - lengthwise

CW - crosswise

PF — perpendicular to the laminate face

N.T. - not tested

NOTES:

I

① Measured as a percentage maximum by weight.

⁽²⁾ This is a typical value which varies with composite thickness.

SERIES 625 PLATE ULTIMATE COUPON PROPERTIES

Below are the test results for the minimum ultimate coupon properties of **EXTREN®** Series 625 plate as per the referenced ASTM procedures. Designers should refer to Section 10 — **PLATE** for the recommended design equations for **EXTREN®**. The actual geometry and application of the plate will determine its ultimate usability.

	•				
PROPERTY	ASTM TEST	UNITS	1/8"	THICKNESS 3/16"-1/4"	; 3/8"-1"
MECHANICAL					
Tensile Stress, LW Tensile Stress, CW Tensile Modulus, LW Tensile Modulus, CW	D638 D638 D638 D638	psi psi 10 ⁶ psi 10 ⁶ psi	20,000 7,500 1.8 1.0	20,000 10,000 1.8 1.0	20,000 10,000 1.8 1.0
Compressive Stress, Edgewise, LW Compressive Stress, Edgewise, CW Compressive Modulus, Edgewise, LW Compressive Modulus, Edgewise, CW	D695 D695 D695 D695	psi psi 10 ⁶ psi 10 ⁶ psi	24,000 16,500 1.8 1.0	24,000 17,500 1.8 1.0	24,000 17,500 1.8 1.0
Flexural Stress, Flatwise, LW Flexural Stress, Flatwise, CW Flexural Modulus, Flatwise, LW Flexural Modulus, Flatwise, CW	D790 D790 D790 D790 D790	psi psi 10 ⁶ psi 10 ⁶ psi	24,000 10,000 1.1 0.8	24,000 13,000 1.1 0.9	24,000 17,000 1.4 1.3
Ultimate Bearing Stress, LW	D953	psi	32,000	32,000	32,000
Poisson's Ratio, LW ② Poisson's Ratio, CW ②	D3039 D3039	in/in in/in	0.32 0.24	0.32 0.24	0.32 0.24
Notched Izod Impact, LW Notched Izod Impact, CW	D256 D256	ft-lbs/in ft-lbs/in	15 5	10 5	10 5
PHYSICAL Barcol Hardness 24 hr. Water Absorption ① Density Coefficient of Thermal Expansion ②	D2583 D570 D792 D696	% Max Ibs/in³ 10 ⁻⁶ in/in/ºF	40 0.6 .060068 8	40 0.6 .060068 8	40 0.6 .060068 8
ELECTRICAL Dielectric Strength, LW ② Dielectric Strength, PF ②	D149 D149	KV/in volts/mil	35 250	35 N.T.	35 N.T.

- LW lengthwise
- CW crosswise
- PF perpendicular to the laminate face
- N.T. not tested

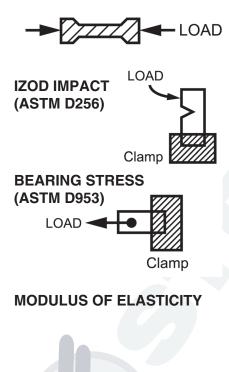
NOTES:

- ① Measured as a percentage maximum by weight.
- ^② This is a typical value which varies with composite thickness.

STRONGWELL.

DESCRIPTION OF TESTS FOR EXTREN®

TEST


TENSILE STRENGTH (ASTM D638)

FLEXURAL PROPERTIES (ASTM D790)

COMPRESSIVE STRENGTH (ASTM D695)

DESCRIPTION

The tensile strength is determined by pulling ends of a test specimen until failure. The tensile modulus can be calculated by measuring the ratio of stress and strain. When the tensile strength is measured in the longitudinal direction, as a first approximation, it is an indication of relative roving content. For example, an all roving thermal cure rod has a higher tensile strength than the **EXTREN®** structural shapes which are a combination of roving and continuous strand mat.

The flexural strength is determined by placing a test specimen between two supports and applying a load to the center. ASTM D790 specifies required span to depth ratios for the test specimen. Flexural tests on coupon samples are often used to determine the effects of environmental conditions such as temperature and corrosive agents.

The ultimate compressive strength of a composite is a force required to rupture the composite when a load is applied such that the specimen is crushed. The compressive test is an excellent indication of the resin matrix to reinforcement bond and has been adopted by the ANSI A14.5 specification for fiberglass rail as the primary physical property audit.

The Izod impact is determined by subjecting a specimen to a pendulum-type collision; the specimen can be notched or unnotched. The energy required to rupture the specimen due to the collision caused by the swinging pendulum is used to calculate the Izod impact strength.

This test specimen consists of a flat strip with a hole machined in one end as specified by the ASTM procedure. The testing consists of clamping the end without the hole and attempting to tear or rupture the hole in the specimen. The load required to rupture the hole is used to determine the bearing stress.

This parameter is determined by loading a prescribed length of the full shape (not a coupon) with a support at each end and applying a center load. From the measured deflection and the known load and span, the bending modulus of elasticity can be determined once the shear deflection effects are identified. This is a more reliable estimate of the field performance in beam bending situation than the coupon properties.

DESCRIPTION OF TESTS FOR EXTREN®

BARCOL HARDNESS (ASTM D2583)	The barcol hardness is a measure of the resistance of the surface of a test specimen to penetration by a needle probe which is spring driven. The barcol hardness value is generally an average of multiple measurements on the same part and is an approximate measure of the composite's completeness of cure.
WATER ABSORPTION (ASTM D570)	In this test, the specimens are immersed in water for a period of 24 hours and the change in weight is measured. This test has utility in electrical and corrosive applications.
DENSITY (ASTM D792)	The density is the ratio of the mass (weight) of a specimen to the volume of the specimen. This parameter is important in determining the ultimate weight of the finished product.
SPECIFIC GRAVITY (ASTM D792)	The ratio of the density of a composite to the density of water.
ARC RESISTANCE (ASTM D495)	This test is performed by placing two probes on a test specimen at a distance of 1/4". A high voltage, low current, arc is passed between the probes with a specified on/off cycle for this arc. The time taken for the arc to completely burn a path through the composite is measured.
DIELECTRIC STRENGTH (ASTM D149)	In this electrical test, the sample is placed between electrodes with the electrodes and the sample immersed in non-conducting oil to prevent a false failure signal. Failure occurs when the voltage is sufficient to cause the current to discharge through the composite. This test is occasionally performed after conditioning the test specimen with water at elevated temperatures.
WEATHERING QUV WEATHEROMETER (ASTM G53)	The QUV Weatherometer applies alternating cycles of water, high temperature, humidity and ultraviolet exposure to measure the weatherability of a given composite and/or additive. This test is primarily comparative in nature between composites and/or formulations. The geographic location of the composite will determine its actual weatherability.
UL 94	EXTREN [®] Series 525 and Series 625 conform to UL 94 testing with a VO Rating. In the UL 94 test, a vertically clamped sample is subjected to a fame from a Bunsen burner.
TUNNEL TEST (ASTM E84)	In the 25 foot tunnel test, a smoke generation value and the rate of flame spread are determined. This test has been the standard for years in measuring flammability and smoke generation.
NBS SMOKE CHAMBER (ASTM E662)	This test requires a much smaller test specimen and essentially places this specimen in the bottom of a chamber and measures the smoke that is generated to an optical detector at the top of the chamber.
FLAMMABILITY (ASTM D635)	This is a less severe flammability test in which the specimen is held horizontally with one end subjected to a flame for 30 seconds.

STRONGWELL

EXTREN® FIBERGLASS REINFORCED POLYMER (FRP)

SCOPE

This specification covers **EXTREN**[®] fiberglass reinforced polymer (FRP) wide flange shapes, I-shapes, channels, angles, tubing, rod, bar, flat sheet and special shapes produced by Strongwell, Bristol, Virginia, and its divisions.

PRODUCT DESCRIPTION

All structural shapes shall be **EXTREN**[®] FRP Series (select one: 500, 525 or 625) produced using the pultrusion process.

All rod and bar shall be Strongwell FRP thermal cure rod and bar produced using the pultrusion process.

DESIGN

Selection of structural shapes for use under compressive or flexural load to be in accordance with load tables provided in the Strongwell *Design Manual*.

TOLERANCES

The tolerance for a structural shape supplied to this specification shall be within the limits given in Section 5 - **TOLERANCES** of the Strongwell *Design Manual*.

FABRICATION AND HANDLING

- Cut edges and holes can be sealed with a resin compatible with the resin matrix used in the structural shape if there is concern about the environment in which the shape will be used.
- 2) The fabricator and contractor shall exercise precautions necessary to protect the fiberglass pultruded structural shapes from abuse to prevent breakage, nicks, gouges, etc. during fabrication, handling and installation.
- 3) Structural shapes shall be fabricated and assembled as indicated on the design drawings and in accordance with Strongwell's **EXTREN**[®] *Fabrication & Repair Manual*.

NOTE:

See Section 20 — Specifications for Fiberglass Reinforced Polymer Products and Fabrications.