SECTION 10

PLATE

SYMBOLS FOR PLATE

- **CW** Crosswise (transverse) to the direction of pultrusion
- E Modulus of elasticity (psi)
- **F**_b Allowable flexural stress (psi)
- F., Ultimate flexural stress (psi)
- I Moment of inertia (in⁴)
- **LW** Lengthwise (parallel) to the direction of pultrusion
- M Bending moment from applied loads (lbs-in)
- S Section modulus (in³)
- **S.F.** Factor of safety
- **a** Long dimension of rectangular plate (in)
- **b** Short dimension of rectangular plate (in)
- **c** Concentrated load (lbs/ft of width)
- **f**_b Flexural stress from applied loads (psi)
- Length of flat sheet (center to center of supports) (in)
- t Thickness of section (in)
- **u** Uniform load (lbs/ft²)
- w Uniform beam load (lbs/in)
- Δ Deflection (in)
- Δ**c** Deflection due to concentrated load (in)
- Δ**u** Deflection due to uniform load (in)

INTRODUCTION

EXTREN® plate may be used as structural members to carry loads applied normal to the surface. Stresses and deflections in the members may be computed by using theories applicable to beams or to orthotropic plate behavior. Directional mechanical properties are inherent in **EXTREN**® plate due to the pultrusion manufacturing process.

Specific properties necessary for design are provided in Section 3 — **PROPERTIES OF EXTREN**®. Values of various material properties are the test results of the minimum ultimate coupon properties. The values are listed as lengthwise or crosswise relative to the direction of motion of the plate through the forming die. The user of pultruded plate must be careful to orient the product in a structure in the same direction as that corresponding to the direction indicated by the property design value.

Theories and equations based on exact and approximate analysis are discussed in detail in the "Structural Plastics Design Manual" — Reference 2, and other reference books. For purposes of design with **EXTREN**® plate, the following procedures are recommended.

ONE-WAY ACTION

Supports for the plate are parallel to each other and limited to two edges of the plate. Selection of the plate thickness for a given load and span or the determination of a load for a given plate thickness and span can be found in the following load/deflection tables. The directional properties of the plate used in the calculations must correspond to the alignment of the plate in the direction of the span between the supports. For uniformly distributed loads over the surface of the plate, it is convenient to work with a "rectangular beam" strip one foot wide to determine stresses and deflections. The load tables are based on a simple span condition. Stresses and deflections for other loading conditions, such as continuous span should be considered in accordance with standard analytical procedures for beams.

The load/deflection tables were generated limiting the deflection to 1% of the span (I/100) and to 1/2 the thickness of the plate. Using this deflection criteria, flexural stress was never a controlling factor. Other deflection criteria may be used at the engineer's discretion.

The tables are typical values based on the strength and stiffness in the lengthwise (LW) direction. For load values in the crosswise (CW) direction, multiply the listed load values by the ratio of the flexural modulus in the CW direction divided by the flexural modulus in the LW direction. The tables for 1/4" thick plate through 1" thick plate can be used for all **EXTREN**® series as the flexural moduli for the different series are the same.

A safety factor (S.F.) of 2.5 is used for the allowable load computations in the tables.

SAMPLE PROBLEM

A flat roof with rafters located at 2 feet on center is to be covered with **EXTREN®** 525 plate to support a live load of 10 pounds per square foot. Maximum allowable deflection cannot exceed 1/100 or 1/2. As a trial, check 1/4 thick plate.

$$\Delta = \frac{5wl^4}{384EI} = \frac{(5)(10/12)(24)^4}{384(1.8 \times 10^6)(.0156)} = .129"$$

$$M = \frac{wl^2}{8} = \frac{(10/12)(24)^2}{8} = 60 \text{ lb-in}$$

$$f_b = \frac{M}{S} = \frac{60 \text{ lb-in}}{.125 \text{ in}^3} = 480 \text{ psi}$$

$$F_b = \frac{F_u}{S.F.} = \frac{35,000 \text{ psi}}{2.5} = 14,000 \text{ psi}$$

Using the load/deflection tables, 1/4" thick plate will deflect .116" at the center of the span which meets the deflection criteria of .125" on a simple span of 24" provided the plates are installed so the lengthwise direction is perpendicular to the rafter direction. If the plates span in the crosswise direction, deflection would be calculated as follows:

$$\Delta CW = \frac{E_{CW}}{E_{LW}}$$

$$\Delta CW = \frac{2.0}{1.1} \times .116 = .211$$

It is noted that the calculated deflection value in the above example is greater than the t/2 deflection limit given in the load tables. The t/2 value is a reference value for the Design Engineer allowing for discretionary judgement.

The standard plate length is 8 feet long so it could extend continuously over 4 spans. The maximum deflection occurring at the end span for the uniform load over 4 spans with the sheets spanning in the lengthwise direction would be as follows:

$$\Delta = .0065 \text{ x } \frac{\text{W}/^4}{\text{EI}} = .058$$
"

The above formula can be found in Section 8 — **FLEXURAL MEMBERS (BEAMS)**; Beam Diagram and Formulas Sub-Section, Load Case 39.

TWO-WAY ACTION

When supports are located around four sides of a plate, the member deforms into a dished configuration and the orthotropic characteristics of the material may be used to an advantage. A limited number of solutions for specific cases are available in various technical literature for orthotropic plates. The *Structural Plastics Design Manual*— Reference 2 includes procedures for determining deflections and stresses of a plate when simply supported at the four edges. The solutions described are based on small-deflection flexural theory and provide approximate values for maximum deflections and stresses.

The two-way load tables of this manual were computed from the recommended procedures of Reference 2 using the values from Section 3 — **PROPERTIES OF EXTREN®**. Computed allowable loads were based on a maximum deflection of the plate equal to one-half the thickness (t/2) of the sheet in accordance with the theoretical limitations or I/100 of the shortest span whichever is smaller. Since the load deflection relationship is linear, reduced deflections are proportional to reduced values of allowable load. If plates are continuous over the support, the maximum deflections will be smaller than t/2 for the load shown in the table. In general, the bending stresses will be well below the flexural strength of the material.

Selected dimensions in the two-way load tables for rectangular plates should include the majority of the combinations of sizes used for most applications. The designer may interpolate between the sizes given in the tables to obtain the allowable loads for plate sizes not given in the table. If unusually large spans are required, the designer is referred to Reference 2 for governing equations and parametric charts.

Allowable Loads

EXTREN® 500, 525 and 625

Plate spanning in Lengthwise Direction

For allowable loads when plate is spanning in crosswise direction, multiply table values by 0.55

I = 0.0156 in⁴/ft. of width S = 0.125 in³/ft. of width.

Span Inches		1/4" T	Thickn	ess	W	/t/ft² =	2.34	bs						MAX LOAD AT Δ = l /100 OR t/2
	u	20	30	40	50	60	70	80	90	100	120	140	160	167
12"	Δu	.014	.022	.029	.036	.043	.050	.058	.065	.072	.086	.101	.115	.120
	С	10	15	20	25	30	35	40	45	50	60	70	80	104
	Δс	.012	.017	.023	.029	.035	.040	.046	.052	.058	.069	.081	.092	.120
	u	13	20	27	33									34
18"	Δu	.047	.073	.099	.121									.125
	С	10	15	20	25									32
	Δс	.038	.058	.079	.096									.125
	u	5	10											11
24"	Δu	.058	.116											.125
	С	5	10											14
	Δс	.046	.092											.125

- c IS CONCENTRATED LOAD LBS/FT WIDTH
- Δ c IS DEFLECTION UNDER CONCENTRATED LOAD
- u IS UNIFORM LOAD LBS/FT²
- Δ u IS DEFLECTION UNDER UNIFORM LOAD

Allowable Loads

EXTREN® 500, 525 and 625

Plate spanning in Lengthwise Direction

For allowable loads when plate is spanning in crosswise direction, multiply table values by 0.70

I = 0.0527 in⁴/ft. of width

S = 0.28 in³/ft. of width.

Span Inches														
12"	u Δu c Δc	20 .004 10 .003	30 .006 15 .005	40 .009 20 .007	50 .011 25 .009	60 .013 30 .010	80 .017 40 .014	100 .021 50 .017	200 .043 100 .034	300 .064 150 .051	400 .085 200 .068	500 .107 250 .085	OR t/2 562 .120 351 .120	
18"	u Δu c Δc	20 .022 15 .017	30 .032 23 .026	40 .043 30 .035	50 .054 38 .043	60 .065 45 .052	80 .086 60 .069	100 .108 75 .086	150 .162 113 .130				167 .180 156 .180	
24"	u Δu c Δc	10 .034 10 .027	20 .068 20 .055	30 .102 30 .082	40 .137 40 .109	50 .171 50 .137							55 .188 69 .188	
30"	u Δu c Δc	10 .083 13 .067	20 .167 25 .133										23 .188 35 .188	
36"	u Δu c Δc	10 .173 15 .138											11 .188 20 .188	

- c IS CONCENTRATED LOAD LBS/FT WIDTH
- $\Delta\,c$ IS DEFLECTION UNDER CONCENTRATED LOAD
- u IS UNIFORM LOAD LBS/FT²
- Δ u IS DEFLECTION UNDER UNIFORM LOAD

Allowable Loads

EXTREN® 500, 525 and 625

Plate spanning in Lengthwise Direction

For allowable loads when plate is spanning in crosswise direction, multiply table values by 0.70

 $I = 0.125 \text{ in}^4/\text{ft. of width}$

 $S = 0.500 \text{ in}^3/\text{ft.}$ of width.

		1/2" 7	hickn	ess	V	/t/ft² =	4.68	lbs						MAX LOAD AT
Span Inches														$\Delta = l / 100$ OR t/2
12"	u Δu c Δc	20 .002 10 .001	30 .003 15 .002	40 .004 20 .003	50 .005 25 .004	60 .006 30 .004	80 .007 40 .006	100 .009 50 .007	250 .023 125 .018	500 .045 250 .036	750 .068 370 .054	1000 .090 500 .072	1250 .113 625 .090	1333 .120 833 .120
18"	u ∆u c ∆c	20 .009 15 .007	30 .014 23 .011	40 .018 30 .015	50 .023 38 .018	60 .027 45 .022	80 .036 60 .029	100 .046 75 .036	250 .114 188 .091					370 .180 370 .180
24"	u Δu c Δc	20 .029 20 .023	30 .043 30 .035	40 .058 40 .046	50 .072 50 .058	60 .086 60 .069	80 .115 80 .092	100 .144 100 .115	150 .216 150 .173					167 .240 209 .240
30"	u Δu c Δc	20 .070 25 .056	30 .105 38 .084	40 .141 50 .113	50 .176 63 .141	60 .211 75 .169								71 .250 111 .250
36"	u Δu c Δc	10 .073 15 .058	20 .146 30 .117	30 .219 45 .175										34 .250 65 .250
42"	u Δu c Δc	10 .135 18 .108												18 .250 40 .250
48"	u Δu c Δc	10 .230 20 .184												11 .250 27 .250

- c IS CONCENTRATED LOAD LBS/FT WIDTH
- Δc IS DEFLECTION UNDER CONCENTRATED LOAD
- u IS UNIFORM LOAD LBS/FT²
- Δ u IS DEFLECTION UNDER UNIFORM LOAD

Allowable Loads

EXTREN® 500, 525 and 625

Plate spanning in Lengthwise Direction

For allowable loads when plate is spanning in crosswise direction, multiply table values by 0.70

I = 0.244 in⁴/ft. of width

S = 0.781 in³/ft. of width.

Span		*5/8" T	ess	Wt/ft²	= 5.79	lbs				MAX LOAD AT Δ = l /100	
Inches	;										OR t/2
	u	100	200	300	400	500	1000	1500	2000	2500	2600
12"	Δu	.005	.009	.014	.018	.023	.046	.069	.092	.115	.120
	С	50	100	150	200	250	500	750	1000	1250	1622
	Δс	.004	.007	.011	.015	.018	.037	.055	.074	.092	.120
40"	u	100	200	300	400	500	600	700			768
18"	Δu	.023 75	.047 150	.070 225	.093 300	.117 375	.140 450	.163 525			.180 723
	c Δc	.019	.037	.056	.075	.093	.112	.131			.180
	u	20	40	100	200	300	.112	.101			326
24"	Δu	.015	.030	.074	.148	.221					.240
	C	20	40	100	200	300					407
	Δς	.012	.024	.059	.118	.177					.240
	u	20	40	60	100	150					167
30"	Δu	.036	.072	.108	.180	.270					.300
	С	25	50	75	125	188					260
	Δс	.029	.058	.086	.144	.216					.300
	u	20	40	60	80						84
36"	Δu	.075	.149	.224	.299						.312
	С	30	60	90	120						157
	Δс	.060	.120	.179	.239						.312
42"	u ^	10 .069	20 .138	30 .208	40 .277						45 .312
42	Δu c	18	35	.208	70						.312
	Δς	.055	.111	.166	.221						.312
	u	10	20								27
48"	Δu	.118	.236								.312
	С	20	40								66
	Δс	.094	.189								.312
	u	10									17
54"	Δu	.189									.312
	C	23									47
	Δс	.151									.312
60"	U A	10 .288									11 .312
80	∆u c	.288 25									.312
	Δс	.231									.312
	40	.201									.012

c IS CONCENTRATED LOAD LBS/FT WIDTH

Δc IS DEFLECTION UNDER CONCENTRATED LOAD

u IS UNIFORM LOAD LBS/FT²

A U IS DEFLECTION UNDER UNIFORM LOAD

Allowable Loads

EXTREN® 500, 525 and 625

Plate spanning in Lengthwise Direction

For allowable loads when plate is spanning in crosswise direction, multiply table values by 0.70

 $I = 0.422 \text{ in}^4/\text{ft. of width}$

 $S = 1.125 \text{ in}^3/\text{ft.}$ of width.

					LUAD	DLIL	ECTIO	וא ו או	,LL			
Span Inches		3/4" T	hickne	ess	Wt/	ft² = 6	.94 lbs	,				MAX LOAD AT Δ = //100 OR t/2
12"	u Δu c Δc	100 .003 50 .002	200 .005 100 .004	400 .011 200 .009	600 .016 300 .013	800 .021 400 .017	1000 .027 500 .021	1500 .040 750 .032	2000 .053 1000 .043	3000 .080 1500 .064	4000 .107 2000 .085	4499 .120 2804 .120
18"	u Δu c Δc	100 .013 75 .011	200 .027 150 .022	400 .054 300 .043	600 .081 450 .065	800 .108 600 .086	1000 .135 750 .108	1200 .162 900 .130				1333 .180 1250 .180
24"	u ∆u c ∆c	50 .021 50 .017	100 .043 100 .034	200 .085 200 .068	300 .128 300 .102	400 .171 400 .136	500 .213 500 .171					563 .240 702 .240
30"	u Δu c Δc	50 .052 63 .042	100 .104 125 .083	150 .156 188 .125	200 .208 250 .167	250 .260 313 .208						288 .300 450 .300
36"	u Δu c Δc	50 .108 75 .086	75 .162 113 .130	100 .216 150 .173	125 .270 188 .216	150 .324 225 .259						167 .360 313 .360
42"	u Δu c Δc	20 .080 35 .064	40 .160 70 .128	60 .240 105 .192	80 .320 140 .256							94 .375 205 .375
48"	u ∆u c ∆c	20 .136 40 .109	30 .205 60 .164	40 .273 80 .218								55 .375 138 .375
54"	u Δu c Δc	10 .109 23 .087	20 .219 45 .175	30 .328 68 .262								34 .375 97 .375
60"	u Δu c Δc	10 .167 25 .133	20 .333 50 .267									22 .375 71 .375

- c IS CONCENTRATED LOAD LBS/FT WIDTH
- Δ c IS DEFLECTION UNDER CONCENTRATED LOAD
- u IS UNIFORM LOAD LBS/FT²
- Δ u IS DEFLECTION UNDER UNIFORM LOAD

Allowable Loads

EXTREN® 500, 525 and 625

Plate spanning in Lengthwise Direction

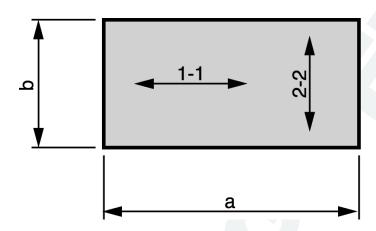
For allowable loads when plate is spanning in crosswise direction, multiply table values by 0.70

 $I = 1.00 \text{ in}^4/\text{ft. of width}$

 $S = 2.00 \text{ in}^3/\text{ft.}$ of width.

Span Inches	•	*1" 7	Thickr	iess	١	Nt/ft² =	9.27 I	bs					MAX LOAD AT Δ = //100
IIICHE													OR t/2
	u	100	200	400	600	800	1000	2000	4000	6000	8000	10000	10677
12"	Δu	.001	.002	.005	.007	.009	.011	.023	.045	.068	.090	.113	.120
	С	50	100	200	300	400	500	1000	2000	3000	4000	5000	6667
	Δс	.001	.002	.004	.005	.007	.009	.018	.036	.054	.072	.090	.120
	u	100	200	400	600	800	1000	2000	3000				3158
18"	Δu	.006	.011	.023	.034	.046	.057	.114	.171				.180
	С	75	150	300	450	600	750	1500	2250				2956
	Δс	.005	.009	.018	.027	.036	.046	.091	.137				.180
	u	100	200	400	600	800	1000	1200					1333
24"	Δu	.018	.036	.072	.108	.144	.180	.216					.240
	С	100	200	400	600	800	1000	1200					1667
	Δс	.014	.029	.058	.086	.115	.144	.173					.240
	u	100	200	300	400	500	600						682
30"	Δu	.044	.088	.132	.176	.220	.264						.300
	С	125	250	375	500	625	750						1068
	Δс	.035	.070	.105	.141	.176	.211						.300
	u	50	100	150	200	250	300						396
36"	Δu	.046	.091	.137	.182	.228	.273						.360
	С	75	150	225	300	375	450						740
	Δс	.036	.073	.109	.146	.182	.219						.360
	u	50	75	100	125	150	200						248
42"	Δu	.084	.127	.169	.211	.253	.338						.420
	С	88	132	175	219	263	350						544
	Δс	.068	.101	.135	.169	.203	.270						.420
	u	20	40	60	80	100	150						167
48"	Δu	.058	.115	.173	.230	.288	.432						.480
	С	40	80	120	160	200	300						416
	Δс	.046	.092	.138	.184	.230	.346						.480
	u	20	40	60	80	100							108
54"	Δu	.092	.185	.277	.369	.461							.500
	С	45	90	135	180	225							305
	Δс	.074	.148	.221	.295	.369							.500
	u	20	40	60									71
60"	Δu	.141	.281	.422									.500
	С	50	100	150									222
	Δс	.113	.225	.338									.500

c IS CONCENTRATED LOAD LBS/FT WIDTH


Δ c IS DEFLECTION UNDER CONCENTRATED LOAD

u IS UNIFORM LOAD LBS/FT²

A U IS DEFLECTION UNDER UNIFORM LOAD

Allowable Loads For Two-Way Design EXTREN® 500, 525 and 625

Allowable loads produce a deflection of t/2 or l/100 whichever is less.

Plat		Re	einforcen	nent Dire	ction 1-	1	R	einforce	ment Di	rection	2-2
Dimens in.			Plate T	hickness	- in.		Plat	e Thick	ness - in	۱.	
b	а	1	3/4	5/8	1/2	3/8	1	3/4	5/8	1/2	3/8
18	36	2727	1258	711	355	151	3896	1798	1016	508	216
24	48	1211	506	294	151	49	1731	724	421	216	71
30	60	619	261	151	64	20	_	_	_	_	_
36	72	359	151	75	31	_	_	_	_	_	_
42	84	225	85	41	16	_	_	_	_	_	_
48	96	151	50	24	_	_	_	_	_	_	_
18	18	9473	4390	2465	1232	546	9473	4390	2465	1232	546
24	24	4210	1751	1021	524	172	4210	1751	1021	524	172
30	30	2142	909	526	223	70	2142	909	526	223	70
36	36	1241	521	262	107	34	1241	521	262	107	34
42	42	777	295	142	58	_	777	295	142	58	_
48	48	524	173	83	34	_	524	173	83	34	_
18	27	3599	1680	954	475	203	5142	2400	1364	679	290
24	36	1622	679	390	202	66	2318	970	558	289	95
30	45	829	350	202	86	27	1185	501	289	123	39
36	54	484	203	101	41	12	_	_	_	_	_
42	63	302	114	54	22	_	_	_	_	_	_
48	72	202	66	32	12		_	_	_	_	_

SAFPLATE® FIBERGLASS GRITTED PLATE

SAFPLATE® is the trade name for a proprietary line of pultruded fiberglass gritted plate produced by Strongwell. **SAFPLATE®** is composed of **EXTREN®** pultruded fiberglass plate with an epoxy coated anti-skid grit surface. The standard product line is produced in 4-ft. x 8-ft. panels of **EXTREN®** Series 525 (slate gray) plate, fiberglass reinforced polyester with fire retardant. The standard grit surface is a silica gradation of 35 to 50 mesh.

SAFPLATE® is available in all standard **EXTREN®** plate thicknesses: 1/8", 3/16", 1/4", 3/8", 1/2", 3/4". The allowable loads are the same as those listed in this section for **EXTREN®** plate. Typical properties of **EXTREN®** plate apply to standard **SAFPLATE®** (see Section 4 — **PROPERTIES OF EXTREN®**).

SAFPLATE® is available as solid plate or bonded to **DURADEK®/DURAGRID®** grating. See Section 14 — **FIBERGLASS GRATING**.

SAFPLATE® can be customized to meet the requirements of a variety of applications. Options include:

- Choice of grit surface In addition to the standard grit surface, an extra coarse grit (angular, sharp edged quartz 14-25 mesh gradation) or a fine grit (round grain sand 70-100 mesh gradation) may be requested.
- Choices of resin system Standard SAFPLATE® is EXTREN® Series 525, but EXTREN® Series 500 polyester and Series 625 fire retardant vinyl ester are available upon request.
- Custom colors available for large quantities.

The skid resistance of **SAFPLATE®** tested for static coefficient of friction per ASTM D-2047, resulted in average test results of 0.99 for **SAFPLATE®** with extra-coarse grit and 0.95 for **SAFPLATE®** with standard grit. This exceeds the typical requirements of 0.50 recommended by OSHA for walking surfaces and The American Disabilities Act (ADA) requirement of 0.60 for accessible routes and 0.80 for ramps.

